Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Arch Pharm (Weinheim) ; : e2400182, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771105

ABSTRACT

The crucial functions of acetylcholinesterase (AChE) in neurotransmission and glutathione S-transferase (GST) in detoxification and cellular protection underscore their pivotal roles as key enzymes, essential for maintaining the integrity of neurological and cellular homeostasis. For this purpose, a series of 1,2,4-triazine-sulfonamide hybrids (3a-r) was successfully synthesized, and subsequently evaluated for their inhibitory effects on AChE and GST. The investigation was complemented by molecular docking studies and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions. The synthesized hybrids demonstrated significant promise in inhibiting both AChE and GST activities. Molecular docking analyses provided insights into the interactions between the compounds and the target enzymes, shedding light on potential binding modes and key amino acid residues involved. Furthermore, the study benefited from ADMET predictions, offering valuable information on the compounds' pharmacokinetic properties and potential toxicity. The promising results obtained from this comprehensive approach highlight the potential of these 1,2,4-triazine-sulfonamide hybrids as effective inhibitors of AChE and GST, paving the way for further development and optimization in the pursuit of novel therapeutic agents.

3.
Neurol Res ; 45(11): 979-987, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37699078

ABSTRACT

OBJECTIVE: Environmental toxins are known to be one of the important factors in the development of Parkinson's disease (PD). This study was designed to investigate the possible contribution of fluoride (F) exposure to oxidative stress and neurodegeneration in rats with PD induced by rotenone (ROT). MATERIALS AND METHODS: A total of 72 Wistar albino male rats were used in the experiment and 9 groups were formed with 8 animals in each group. ROT (2 mg/kg) was administered subcutaneously (sc) for 28 days. Different doses of sodium fluoride (NaF) (25, 50 and 100 ug/mL) were given orally (po) for 4 weeks. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), oxidative DNA damage (8-OHdG) and cholinesterase (AChE/BChE) enzyme activities were evaluated in serum and brain tissue homogenates. RESULTS: Rats treated with ROT and NaF had significant increases in serum and brain MDA, NO content, and decreases in GSH. In addition, the combination of ROT and NaF triggered oxidative DNA damage and resulted in increased AChE/BChE activity. CONCLUSIONS: Findings suggest that NaF and ROT may interact synergistically leading to oxidative damage and neuronal cell loss. As a result, we believe that exposure to pesticides in combination with NaF is one of the environmental factors that should not be ignored in the etiology of neurological diseases such as PD in populations in areas with endemic fluorosis.


Subject(s)
Parkinson Disease , Rotenone , Rats , Animals , Rotenone/toxicity , Rotenone/therapeutic use , Parkinson Disease/drug therapy , Fluorides/pharmacology , Fluorides/therapeutic use , Nitric Oxide , Rats, Wistar , Cholinesterases/pharmacology , Cholinesterases/therapeutic use , Lipid Peroxidation , Oxidative Stress , Antioxidants/pharmacology , Glutathione/metabolism
4.
J Biochem Mol Toxicol ; 37(2): e23259, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36419212

ABSTRACT

Cholinesterases catalyze the breakdown of the neurotransmitter acetylcholine (ACh), a naturally occurring neurotransmitter, into choline and acetic acid, allowing the nervous system to function properly. In the human body, cholinesterases come in two types, including acetylcholinesterase (AChE; E.C.3.1.1.7) and butyrylcholinesterase (BChE; E.C.3.1.1.8). Both cholinergic enzyme inhibitors are essential in the biochemical processes of the human body, notably in the brain. On the other hand, GSTs are found all across nature and are the principal Phase II detoxifying enzymes in eukaryotes and prokaryotes. Specific isozymes are identified as therapeutic targets because they are overexpressed in various malignancies and may have a role in the genesis of other diseases such as neurological disorders, multiple sclerosis, asthma, and especially cancer cell. Piperazine chemicals have a role in many biological processes and have fascinating pharmacological properties. As a result, therapeutically effective piperazine research is becoming more prominent. Half maximal inhibition concentrations (IC50 ) of piperazine derivatives were found in ranging of 4.59-6.48 µM for AChE, 4.85-8.35 µM for BChE, and 3.94-8.66 µM for GST. Also, piperazine derivatives exhibited Ki values of 8.04 ± 5.73-61.94 ± 54.56, 0.24 ± 0.03-32.14 ± 16.20, and 7.73 ± 1.13-22.97 ± 9.10 µM toward AChE, BChE, and GST, respectively. Consequently, the inhibitory properties of the AChE/BChE and GST enzymes have been compared to Tacrine (for AChE and BChE) and Etacrynic acid (for GST).


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Humans , Butyrylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Enzyme Inhibitors , Glutathione Transferase , Piperazines/pharmacology
5.
J Biomol Struct Dyn ; 41(10): 4286-4294, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35442162

ABSTRACT

In this study, a series of novel Schiff bases (4a-4h) containing 1,2,4-triazole structure were synthesized through a condensation reaction of 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones with 3-(4-methylbenzenesulfonyloxy)-benzaldehyde. The structures of 3-alkyl(aryl)-4-[3-(4-methylsulfonyloxy)-benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h) were determined through a range of spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and elemental analysis). In addition, enzyme inhibitory properties of the newly synthesized Schiff bases were determined against acetylcholinesterase (AChE). Their Ki values were calculated in the range of 0.70 ± 0.07-8.65 ± 5.6 µM. Besides, their IC50 values were calculated in the range of 0.43-3.87 µM. Finally, in silico molecular docking interactions of the compounds with AChE target enzyme (PDB ID:4EY7) were evaluated using Chimera and AutoDock Vina softwares. The lowest binding energy levels (-12.0 kcal/mol) of the compounds 4e and 4g with AChE target enzyme were verified the best binding affinities and molecular interactions.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Schiff Bases , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Molecular Structure , Structure-Activity Relationship
6.
J Biomol Struct Dyn ; 40(7): 2991-3002, 2022 04.
Article in English | MEDLINE | ID: mdl-33234029

ABSTRACT

The compounds (3-6) used in this study were re-synthesized in accordance with our previous study. The inhibitory effect of the complexes on some metabolic enzymes was examined and it was demonstrated that the enzymes inhibited by ligands and their complex molecules at micromolar level. The best Ki value for α-glycosidase enzyme was absorved 1.01±0.08 µM for compound 6. The biological activity of ligand and metal complexes against enzymes was compared with molecular docking method. The enzymes used against ligand and metal complexes respectively: Achethylcholinesterase for ID 4M0E (AChE), butyrylcholinesterase for ID 5NN0 (BChE), α-glycosidase for ID 1XSI (α-Gly). ADME analysis was performed to examine the drug properties of the compounds (3-6). Besides, the anticancer properties of the complexes were studied. The doses of all compounds caused significant reductions in MCF-7 cell viability. The 3 and 5 compounds administered to PC-3 cells exhibited a more pronounced cytotoxic effect than the other two compounds (4 and 6). Furthermore, antibacterial activities of these compounds against Escherichia coli and Staphylococcus aureus were examined.Communicated by Ramaswamy H. Sarma.


Subject(s)
Butyrylcholinesterase , Coordination Complexes , Acetylcholinesterase/metabolism , Anti-Bacterial Agents/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolases/metabolism , Indoles/pharmacology , Ligands , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
7.
J Biomol Struct Dyn ; 40(22): 12260-12267, 2022.
Article in English | MEDLINE | ID: mdl-34445923

ABSTRACT

Chalcone derivative, ethyl 2-(4-(3-(benzo[b]thiophen-2yl)acryloyl)phenoxy)acetate (I), was synthesized. Compound I was characterized by proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR), fourier transform infrared (FTIR) and mass (LC-ESI-MS/MS) spectroscopic methods. Density Functional Theory (DFT) calculations for compound I were performed at B3LYP/6-311++G(d,p) level. Optimized geometry, frontier molecular orbitals (HOMO; highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital), IR and NMR parameters of compound I were obtained. The evaluations reveal that the calculation results support the experimental results. The inhibition effects of compound I on cholinesterases and GST enzyme were investigated. Ki and inhibition concentration (IC50) values were calculated separately. Ki values of compound I were found for GST 14.19 ± 2.15, for AChE 11.13 ± 1.22 and for BChE 8.74 ± 0.76 recpectively. The docking analysis of compound I supported the enzym inhibition activity exhibiting high inhibition constant and binding energy for three receptors. Compound I is strongly bound to AChE, huBChE and Glutathione S-transferase with binding energies -11.24, -8.56 and -10.39 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chalcone , Chalcones , Chalcones/pharmacology , Chalcone/pharmacology , Thiophenes/pharmacology , Tandem Mass Spectrometry , Spectrum Analysis, Raman , Acetates , Spectroscopy, Fourier Transform Infrared , Quantum Theory
8.
J Biomol Struct Dyn ; 40(22): 11587-11593, 2022.
Article in English | MEDLINE | ID: mdl-34351836

ABSTRACT

Glutathione s-transferase (GST) is a class of enzymes that performs a wide array of biological functions. However, GST enzymes are most famously known for their roles in catalyzing the conjugation of reduced glutathione (GSH) to electrophilic centers on a wide variety of substrates to induce water-solubility to compounds as a protective antioxidant mechanism against toxic substances. In the present study, in vitro inhibition effects of coumarin, ascorbic acid, sodium sulfide, sodium azide, citric acid compounds, and Cd2+, Cu2+, Ni2+, Mg2+ metal ions against GST enzyme were determined. For this aim, the GST enzyme was purified from Vaccinium arctostapylous L. using the glutathione-agarose affinity chromatography and Sephadex G-100 gel filtration steps. The respective metals and chemical compounds were used at different concentrations for measuring their in vitro GST activity effects. The Ki values of these agents were determined as 0.450 ± 0.13, 15.05 ± 7.05, 0.009 ± 0.001, 0.022 ± 0.006, 0.120 ± 0.36, 0.150 ± 0.06, 0.223 ± 0.03, 0.002 ± 0.0003, and 0.136 ± 0.06 mM, respectively. Finally, the molecular docking interactions of the compounds with the GST target enzyme were evaluated using Autodock Tools-1.5.6. The effective molecular interactions of coumarin, citric acid, ascorbic acid, and sodium sulfide with GST target enzyme were found with their binding lowest energy affinities -4.62, -3.04, -2.53, and -1.67 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.


Subject(s)
Glutathione Transferase , Metals , Glutathione Transferase/metabolism , Molecular Docking Simulation , Metals/pharmacology , Glutathione
9.
Mol Divers ; 26(5): 2459-2472, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34743300

ABSTRACT

Schiff bases are well-known compounds for having significant biological properties. In this study, a new Schiff base ligand and its metal complexes were synthesized, and their antioxidant and enzyme inhibitory activities were evaluated. The new Schiff base ligand was synthesized with the condensation reaction of 6-tert-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate and 2-hydroxybenzaldehyde compounds. Fe(II), Co(II), and Ni(II) metal complexes of the novel Schiff base ligand were synthesized and characterized. The purity and molecular formula of the synthesized compounds were identified with elemental analysis, infrared, ultraviolet-visible, mass spectrophotometry, powder XRD, magnetic and thermal measurements. The Schiff base acted as a three dentate chelate. The analytical and spectroscopic data suggested an octahedral geometry for the complexes. The in vitro antioxidant method studies elucidated a more effective antioxidant character of the Schiff base ligand than its metal complexes but a less effective antioxidant potential than the standard antioxidant compounds. The enzyme inhibition potentials of the synthesized compounds for AChE, BChE, and GST enzymes were determined by in vitro enzyme activity methods. The Schiff base ligand was discovered to be the best inhibitor for the AChE and BChE with the values of 7.13 ± 0.84 µM and 5.75 ± 1.03 µM Ki, respectively. Moreover, the Fe(II) complex displayed the best Ki value as 9.37 ± 1.06 µM for the GST enzyme. Finally, molecular docking studies were carried out to see the structural interactions of the compounds. The metal complexes demonstrated better binding affinities with the AChE, BChE, and GST enzymes than the Schiff base ligand. This study identified a potential Schiff base molecule against both AChE and BChE targets to further investigate for in vivo and safety evaluation.


Subject(s)
Coordination Complexes , Schiff Bases , Antioxidants/chemistry , Bacteria , Coordination Complexes/chemistry , Ferrous Compounds/pharmacology , Ligands , Metals/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Powders/pharmacology , Pyridines/pharmacology
10.
Chem Biodivers ; 18(12): e2100433, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34596972

ABSTRACT

In the present study, 3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (S1-8) were synthesized by treating 4-hydroxybenzaldehyde (B) with eight different 3-substitued-4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones (T1-8) in acetic acid medium, separately. The synthesized Schiff bases (S) were reacted with formaldehyde and secondary amine such as 4-piperidinecarboxyamide to afford novel heterocyclic bases. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (T) were treated with 4-piperidinecarboxyamide in the presence of formaldehyde to synthesize eight new 1-(4-piperidinecarboxyamide-1-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (M1-8). The structure characterization of compounds was carried out using 1 H-NMR, IR, HR-MS, and 13 C-NMR spectroscopic methods. The inhibitory properties of the newly synthesized compounds were calculated against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes. Ki values were calculated in the range of 20.06±3.11-36.86±6.17 µM for GST, 17.87±2.91-30.53±4.25 µM for AChE, 9.08±0.69-20.02±2.88 µM for BChE, respectively, Besides, IC50 values were also calculated. Best binding scores of -inhibitors against used enzymes were calculated as -12.095 kcal/mol, -12.775 kcal/mol, and -9.336 kcal/mol, respectively. While 5-oxo-triazole piperidine-4-carboxamide moieties have a critical role in the inhibition of AChE and GST enzymes, hydroxy benzyl moiety is important for BChE enzyme inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Heterocyclic Compounds/pharmacology , Piperidines/pharmacology , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glutathione Transferase/metabolism , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Schiff Bases/pharmacology , Spectrophotometry, Infrared
11.
J Food Biochem ; 45(12): e13975, 2021 12.
Article in English | MEDLINE | ID: mdl-34676566

ABSTRACT

Daucus carota L. ssp. major (DCM) plant is widely used in traditional medicine to treat some types of cancer and various diseases. Therefore, we evaluated the biological activities of this plant to define its effects against prostate cancer (PCa), Alzheimer's disease (AD), oxidation, and diabetes mellitus (DM) as well as identified its phenolic composition. To determine the anti-cancer properties of the plant extract, we treated PCa cells with the extract at a concentration range of 0.25, 0.5, 1, 2, and 4 mg/ml. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. As a result of precise measurements at the millimolar level, it was observed that the plant extract showed an effective inhibition (IC50 ) against glutathione S-transferase (GST; 12.84 mM), acetyl cholinesterase (AChE; 15.07 mM), and α-Gly (11.75 mM) enzymes when compared with standard inhibitors. Antioxidant activities of DCM methanol extract were determined via two well-known in vitro techniques. The extracts showed antioxidant activities against the DPPH and ABTS+ . The LC-ESI-MS/MS was used to determine the phenolic compounds of methanol extract from DCM. Chlorogenic acid (2,089.096 µg/g), shikimic acid (193.14 µg/g), and coumarin (113.604 µg/g) were characterized as major phenolic compounds. In addition, the interactions of chlorogenic acid, chrysin, coumarin, and shikimic acid with the used three enzymes have been calculated using molecular docking simulation. PRACTICAL APPLICATIONS: Plant natural phenolic compounds have protective effects such as anti-inflammatory, antioxidant, anticarcinogen, and enzyme inhibitory. Therefore, it has an important place in the food and pharmaceutical industry. The present study aims to reveal the enzyme inhibitory, antioxidant, and anticarcinogenic properties of the Daucus carota ssp. Major (DCM) plant extract. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. DCM extract demonstrated considerable antioxidant activity and inhibitory potential on used metabolic enzymes. These biological effects are thought to have a relationship with rich chemical composition.


Subject(s)
Acetylcholinesterase , Daucus carota , Glutathione Transferase , Glycoside Hydrolases , Humans , Male , Molecular Docking Simulation , PC-3 Cells , Phytochemicals , Plant Extracts/pharmacology , Prostate , Tandem Mass Spectrometry
12.
Biophys Chem ; 277: 106629, 2021 10.
Article in English | MEDLINE | ID: mdl-34126547

ABSTRACT

Many plant species have a large diversity of secondary metabolites with different biological activities. This study aims to assess the phenolic constituent, enzyme inhibitory and antioxidant activities of the aqueous (water) and methanol extracts of Inula discoidea. The enzyme assays showed effective enzyme inhibition of the methanol extract against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glutathione S-transferase (GST), and α-glycosidase (α-Gly) enzymes. The IC50 values for AChE, BChE, GST, and α-Gly were found as 38.5 mg/mL, 34.65 mg/mL, 77.0 mg/mL, and 40.76 mg/mL, respectively. Antioxidant properties of the aqueous and methanol extracts of I. discoidea were determined by four well-known in vitro techniques (ABTS, CUPRAC, DPPH, and FRAP methods). The antioxidant values of both water and methanol extracts were found to be better than the standard antioxidants (BHA, BHT, ascorbic acid, and α-tocopherol) in ABTS and CUPRAC methods. According to an updated LC-MS/MS technique analysis, quinic acid (21.08 mg/g), protocatechuic acid (4.49 mg/g), and gallic acid (0.48 mg/g) were found as major phenolic compounds of the plant extract. The binding interactions of major phenolic compounds of I. discoidea with the AChE, BChE, GST, and α-Gly enzymes were investigated by the molecular docking studies.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Inula , Molecular Docking Simulation , Phytochemicals
13.
Biometals ; 34(2): 393-406, 2021 04.
Article in English | MEDLINE | ID: mdl-33528765

ABSTRACT

A series of Fe(II), Ni(II), and Pd(II) complexes were prepared with a novel Schiff base ligand containing pyridine moiety. The prepared compounds were characterized using FT-IR, 1H and 13 C NMR, UV-Vis, powder XRD, thermogravimetric analysis, mass spectra, magnetic susceptibility, and elemental analysis. The coordination geometry of Fe(II) and Ni(II) complexes were octahedral, where Fe(II) and Ni(II) metal ions were coordinated by an oxygen atom of the carbonyl group, a nitrogen atom of the azomethine moiety, and a phenolic oxygen atom. The Pd(II) complex had square planar geometry. All of the synthesized compounds were tested for their biochemical properties, including enzyme inhibition and antioxidant activities. According to the in vitro DPPH and FRAP antioxidant methods, the Schiff base ligand and its Fe(II)/Pd(II) complexes showed close antioxidant activities against the standards (BHA, BHT, ascorbic acid, and α-tocopherol). Enzyme inhibitions of the metal complexes were investigated against glutathione S-transferase (GST), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes. The best inhibition value (Ki) was observed for the Ni(II) complex against GST (2.63 ± 0.04 µM). Also, the Pd(II) complex showed the best inhibition value (10.17 ± 1.88 µM) against AChE. Molecular docking specified significant interactions at the active pockets of respective target enzymes. The Ni(II) complex exhibited good binding affinity against both BChE (- 9.0 kcal/mol and 9.36 ± 2.03 µM) and GST (- 7.0 kcal/mol and 2.63 ± 0.04 µM) enzymes.


Subject(s)
Antioxidants/pharmacology , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Metals, Heavy/pharmacology , Molecular Docking Simulation , Pyridines/pharmacology , Acetylcholinesterase/metabolism , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Fluorescence Recovery After Photobleaching , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/metabolism , Ligands , Metals, Heavy/chemistry , Molecular Structure , Picrates/antagonists & inhibitors , Pyridines/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology
14.
Bioorg Chem ; 107: 104606, 2021 02.
Article in English | MEDLINE | ID: mdl-33476865

ABSTRACT

In this study, new 1,2,3-triazole derivatives containing chalcone core (1-7) were synthesized. Obtained compounds were characterized by IR, 1H NMR, 13C NMR, and mass studies. Characterized compounds (1-7) inhibitory effects were tested against the glutathione S-transferase (GST), acetylcholinesterase (AChE), and Butyrylcholinesterase (BChE). Their Ki values were in the range of 5.88-11.13 µM on AChE, 5.08-15.12 µM on BChE, and 9.82-13.22 µM on GST. Remarkable inhibitory effects were obtained against three tested metabolic enzymes. Also, binding scores of the best-inhibitors against AChE, BChE, and GST enzymes were detected as -9.969 kcal/mol, -10.672 kcal/mol, and -8.832 kcal/mol, respectively. Isoindoline-1,3-dione and benzothiophene moieties played a critical role in the inhibition of AChE and BChE enzymes, respectively. Phenylene and triazole moieties had the most important interactions for inhibition of the GST enzyme. Therefore, in vivo and in silico results indicated that these compounds can be considered in drug design processes for the treatment of some diseases including Alzheimer's disease (AD), leukemia, and some type of cancer.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Glutathione Transferase/metabolism , Triazoles/chemistry , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Binding Sites , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Glutathione Transferase/antagonists & inhibitors , Humans , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/therapeutic use
15.
Arch Physiol Biochem ; 127(2): 97-101, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31135232

ABSTRACT

Benzimidazole, an anthelmintic used in the manufacture of human and veterinary drugs, is an important heterocyclic compound. In this work, I investigated the effect of drugs such as ricobendazole, thiabendazole, albendazole, and oxfendazole, on Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) enzyme activity. As kinetic studies, Ki and IC50 values were calculated separately for each drug, respectively. Study findings have shown that benzimidazoles inhibit both AChE and BChE enzymes at the nanomolar level. The compound that best was inhibited the AChE enzyme ricobendazole, and it was that the best inhibited the BChE enzyme thiabendazole. IC50 and Ki values were calculated 123.02 nM, 28.68 ± 8.46 nM for AChE and 64.26 nM, 12.08 ± 2.18 nM for BChE respectively. The types of inhibition indicated by the drugs were investigated and they were found to show non-competitive inhibition.


Subject(s)
Acetylcholinesterase/chemistry , Benzimidazoles/toxicity , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/toxicity , Animals
16.
J Biomol Struct Dyn ; 39(9): 3277-3284, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32362189

ABSTRACT

Nowadays, inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and glutathione S-transferases (GSTs) have been a very crucial issue for pharmacological treatments of several disasters. Herein, we investigated inhibition effects of Tamoxifen (TAM), Isoprenaline (ISO), Chlorpromazines (CPZ) and Carbamazepine (CBZ) on GST, AChE, BChE and then molecular structures and active sides of the tested drugs by molecular docking process. The enzyme activity results showed that nearly the whole tested drugs inhibited GST, BChE, AChE efficiently. Chlorpromazine was found to be the best inhibitor for the GST enzyme and the Ki value of this drug was found to be 42.83 ± 8.52 nM. Besides, Isoproterenol drug with the Ki value of 51.80 ± 9.44 nM was found to be the most effective inhibitor on the AChE enzyme. Molecular docking studies showed that the receptor-binding sites of GST, AChE, and BChE were found to 1.069, 1.090, and 1.15 of Sitecore and 0.992, 1.113, and 1.217 of Dscore, respectively. The method was validated by doing validation studies and these validations revealed that re-docked ligands located a very closed position with co-crystallized ligand into the active site for all receptors. Calculation studies for determining the possible enzyme inhibition mechanism with the used drugs revealed that amino and aromatic ring in the structure of the drugs used are effective in inhibition reactions.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chlorpromazine , Pharmaceutical Preparations , Acetylcholinesterase , Carbamazepine , Cholinesterase Inhibitors , Glutathione Transferase , Isoproterenol/pharmacology , Molecular Docking Simulation , Tamoxifen
17.
J Biomol Struct Dyn ; 39(17): 6480-6487, 2021 10.
Article in English | MEDLINE | ID: mdl-32752945

ABSTRACT

The Schiff base ligand ((E)-6-methyl-2-(2,3,4-trimethoxybenzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile) and its cobalt(II) and palladium(II) complexes were successfully prepared. The structure of the compounds was elucidated by various techniques (NMR, FT-IR, powder X-ray diffraction, microanalysis, TGA, magnetic susceptibility, mass spectrometry). The Pd(II) complex showed a square planar geometry and the Co(II) complex had an octahedral geometry. ABTS (2,2-azino-bis 3-ethylbenzothiazloine-6-sulphonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power) and CUPRAC (cupric reducing antioxidant capacity) in vitro methods were applied to identify the antioxidant features of the synthesized compounds. In addition, glutathione S-transferase and acetyl/butyryl cholinesterase enzymes were examined for possible inhibition capacities of the complexes. According to the enzyme activity measurements, Ru(II) complex inhibited both GST and BChE enzymes, while Fe(II) complex inhibited only AChE enzyme. Furthermore, the antioxidant activities and enzyme inhibitions of the previously synthesized Fe(II) and Ru(II) complexes of the same ligand were examined to make a comparison of the metal complexes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Coordination Complexes , Schiff Bases , Antioxidants/pharmacology , Coordination Complexes/pharmacology , Ligands , Powders , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
18.
J Biomol Struct Dyn ; 39(15): 5449-5460, 2021 09.
Article in English | MEDLINE | ID: mdl-32691682

ABSTRACT

Sulfonamide derivatives exhibit a wide biological activity and can function as potential medical molecules in the development of a drug. Studies have reported that the compounds have an effect on many enzymes. In this study, the derivatives of amine sulfonamide (1i-11i) were prepared with reduced imine compounds (1-11) with NaBH4 in methanol. The synthesized compounds were fully characterized by spectral data and analytical. The effect of the synthesized derivatives on acetylcholinesterase (AChE), glutathione S-transferase (GST) and α-glycosidase (α-GLY) enzymes were determined. For the AChE and α-GLY, the most powerful inhibition was observed on 10 and 10i series with KI value in the range 2.26 ± 0.45-3.57 ± 0.97 and 95.73 ± 13.67-102.45 ± 11.72 µM, respectively. KI values of the series for GST were found in the range of 22.76 ± 1.23-49.29 ± 4.49. Finally, the compounds have a stronger inhibitor in lower concentrations by the attachment of functional electronegative groups such as two halogens (-Br and -CI), -OH to the benzene ring and -SO2NH2. The crystal structures of AChE, α-GLY, and GST in complex with selected derivatives 4 and 10 show the importance of the functional moieties in the binding modes within the receptors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Glutathione Transferase , Glycoside Hydrolases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides , Benzenesulfonamides
19.
J Biomol Struct Dyn ; 39(10): 3693-3702, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32406329

ABSTRACT

Inhibitory effect of the complexes on some metabolic enzyme demonstrated that the enzymes inhibited by ligand and it's complex molecules at the micromolar level. The best inhibition effect for α-glycosidase (α-Gly) enzyme against cobalt complex with Ki value of 3.77 ± 0.58 µM. For achethylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes against SM-Co complex, Ki values of 74.23 ± 5.02 µM and 101.21 ± 12.84 µM Ki were observed, respectively. Molecular docking studies were performed to compare the biological activities of ligands and ligand complexes against enzymes whose names are AChE for ID 4M0E, BChE for ID 5NN0, α-Gly for ID 1XSI respectively. Also, anticancer properties of the complexes studied. The doses of all compounds caused significant reductions in MCF-7 cell viability. Zr compound showed the best cytotoxic activity against the MCF-7 cell. SM ligand administered to PC-3 cells exhibited a more pronounced cytotoxic effect than the SM-Co and Zr compounds.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolases , Molecular Docking Simulation
20.
Bioorg Chem ; 107: 104524, 2021 02.
Article in English | MEDLINE | ID: mdl-33317836

ABSTRACT

The synthesized Schiff Bases were reacted with formaldehyde and secondary amine such as 2,6-dimethylmorpholine to afford N-Mannich bases through the Mannich reaction. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4) were treated with 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize eight new 1-(2,6-dimethylmorpholino-4-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h). The structures of the synthesized eight new compounds were characterized using IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Synthesized compounds inhibitory activity determined against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes with Ki values in the range 25.23-42.19 µM for AChE, 19.37-34.22 µM for BChE, and 21.84-41.14 µM for GST, respectively. Binding scores of most active inhibitors against AChE, BChE, and GST enzymes were detected as -10.294 kcal/mol, -9.562 kcal/mol, and -7.112 kcal/mol, respectively. The hydroxybenzylidene moiety of the most active inhibitors caused to inhibition of the enzymes through hydrophobic interaction and hydrogen bond.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Mannich Bases/pharmacology , Morpholines/pharmacology , Schiff Bases/pharmacology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Caco-2 Cells , Catalytic Domain , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Dogs , Drug Design , Enzyme Assays , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Madin Darby Canine Kidney Cells , Mannich Bases/chemical synthesis , Mannich Bases/metabolism , Molecular Docking Simulation , Morpholines/chemical synthesis , Morpholines/metabolism , Protein Binding , Schiff Bases/chemical synthesis , Schiff Bases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...